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Abstract

We study the two-dimensional bin packing problem
with and without rotations. Here we are given a set of
two-dimensional rectangular items I and the goal is
to pack these into a minimum number of unit square
bins. We consider the orthogonal packing case where
the edges of the items must be aligned parallel to
the edges of the bin. Our main result is a 1.405-
approximation for two-dimensional bin packing with
and without rotation, which improves upon a recent
1.5 approximation due to Jansen and Prädel. We also
show that a wide class of rounding based algorithms
cannot improve upon the factor of 1.5.

Keywords: Rectangle Packing, Bin Packing,
Scheduling and Resource Allocation Problems, Ap-
proximation Algorithms, Combinatorial Optimiza-
tion.

1 Introduction

Bin packing is one of the most fundamental problems
in optimization and has been extensively studied in
approximation algorithms starting from the classical
work of Garey and Johnson [12]. The problem is also
important from a practical standpoint and finds var-
ious applications in scheduling and routing. In this
paper we consider the two dimensional bin packing
problem, defined as follows. We are given a collec-
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tion of rectangular items specified by their width and
height, that must be packed into a minimum number
of unit size square bins. We consider the widely stud-
ied orthogonal packing case, where the items must be
placed in the bin such that their sides are parallel to
the sides of the bin. Here two variants are usually
studied, (i) where the items cannot be rotated, and
(ii) they can be rotated by 90 degrees.

Already in the 1-D case, a simple reduction from
the Partition problem shows that it is NP-hard to
determine whether a set of items can be packed in two
bins or not, implying that no approximation better
than 3/2 is possible. However, this does not rule out
the possibility of an Opt + 1 guarantee, and hence it
is insightful to consider the asymptotic approximation
ratio (AAR, denoted by R∞A ). Given a poly-time
algorithm A, we define R∞A = lim

n→∞
sup RnA ,

where RnA = max{A(I)/Opt(I)|Opt(I) = n} and I
ranges over all possible problem instances. A problem
is said to admit an Asymptotic Polynomial Time
Approximation Scheme (APTAS) if for every ε > 0,
there is a poly-time algorithm with an asymptotic
approximation ratio of (1 + ε).

Related previous work. In their celebrated work,
de la Vega and Lueker [11] gave the first APTAS for
the 1-D bin packing problem. This was substantially
improved by Karmarkar and Karp [20] who gave
a guarantee of Opt + O(log2 Opt). Very recently,
this has been improved by Rothvoss [26] to Opt +
Õ(log Opt). On the other hand, the possibility of an
algorithm with an Opt + 1 guarantee is still open.

The 2-D case is substantially different from the
1-D case. Bansal et al. [2] showed that no APTAS



is possible unless P=NP. On the positive side, there
has also been a long sequence of works giving im-
proved algorithms. Until the mid 90’s the best known
bound was a 2.125 approximation [9], which was im-
proved by Kenyon and Rémila [22] to a 2 + ε approx-
imation for any ε > 0. An important breakthrough
was achieved by Caprara [5], who gave an algorithm
that achieves an asymptotic approximation ratio of
T∞ + ε ≈ 1.69103 + ε. Here T∞ is the well-known
“Harmonic” constant that appears ubiquitously in
the context of bin packing. This was later improved
by Bansal et al. [3] to (lnT∞+1) ≈ 1.52 by combining
the algorithm of Caprara [5] with a general approx-
imation method for set-covering problems known as
Round-and-Approx, that we will also consider in this
paper.

Recently Jansen and Prädel [16] improved this
guarantee further to give a 1.5-approximation algo-
rithm. Their algorithm is based on exploiting several
non-trivial structural properties of how items can be
packed in a bin. This is the best algorithm known
so far, and holds both for the case with and with-
out rotations. We remark that there is still a huge
gap between these upper bounds and known lower
bounds. In particular, the best known explicit lower
bound on the asymptotic approximation for 2-D BP
is currently 1+1/3792 and 1+1/2196 for the versions
with and without rotations respectively [7].

Our Results. Our main result is an improved
algorithm for the 2-D bin packing problem. In
particular we show the following.

Theorem 1.1. There is a polynomial time algorithm
with an asymptotic approximation ratio of ln(1.5) +
1 ≈ 1.405 for 2-D bin packing. This holds both for
the version with and without rotations.

The main idea behind theorem 1.1 is to show that
the round and approx framework introduced by [3]
(we describe this in section 2) can be applied to the
result of Jansen and Prädel [16]. Roughly speaking,
this framework states that given a packing problem,
if (i) the configuration LP for the problem (with the
original item sizes) can be solved up to error 1 + ε
for any ε > 0, and (ii) there is a ρ approximation
for the problem that is subset-oblivious; then one can
obtain a (1 + ln ρ) asymptotic approximation for the
problem.

In [3], it was shown that the APTAS for 1-D
BP due to [11] and the 2-D BP algorithm of [5]
are subset-oblivious. However, the notion of subset-
obliviousness as defined in [3] is based on various
properties of dual-weighting functions, making it

somewhat tedious to apply and also limited in scope
(e.g. it is unclear to us how to apply this method
directly to the algorithm of [16]).

In this paper we give a more general argument
to apply the R&A framework directly to a wide class
of algorithms1, and without any reference to dual-
weighting functions. In particular, we show that any
algorithm based on rounding the (large) items into
O(1) types is subset-oblivious. The main observation
is that any ρ-approximation based on rounding the
item sizes can be related to another configuration LP
(on rounded item sizes) whose solution is no worse
than ρ times the optimum solution. As the item sizes
are rounded, there are only O(1) constraints in this
LP and it can be easily shown to be subset oblivious.

For the particular case of 2-D BP, we present the
algorithm of Jansen and Prädel that directly fits in
the above framework. As most algorithms for bin-
packing problems are based on rounding into O(1)
types, this makes the framework widely applicable.
For example, this gives much simpler proofs of all
the results in [3].

Finally, we give some results to show the lim-
itations of rounding based algorithms in obtaining
better approximation ratios. Rounding of items to
O(1) types has been used implicitly [4] or explicitly
[11, 20, 5, 16, 21], in almost all bin packing algo-
rithms. There are typically two types of rounding:
either the size of an item in some coordinate (such
as width or height) is rounded up in an instance-
oblivious way (e.g. in Harmonic rounding [23, 5],
or rounding sizes to geometric powers [20]), or it is
rounded up in a input sensitive way (e.g. in linear
grouping [11]). We show the following result for 2-D
bin packing.

Theorem 1.2. Any rounding based algorithm that
rounds at least one side of each large item to some
number in a constant size collection values chosen in-
dependent of problem instance (let us call such round-
ing input-agnostic), cannot have an approximation
ratio better than 3/2.

Remark: The algorithm in theorem 1.2 is allowed
to determine which dimension to round for each item
type, based on the problem instance. The only
restriction we require is that identical items must be
rounded in the same way.

Organization. The paper is organized as follows. In
section 2, we present the preliminaries. In section 3,

1This includes all known algorithms that we know of for
bin-packing type problems, except the ones based on R&A
method.



we describe how the Round and Approx framework
can be applied to rounding based algorithms. In
section 4, we present the 1.5 approximation algorithm
of [16] and show how the round and framework
applies to it. Finally, in Section 5 we show our lower
bounds for rounding based algorithms.

2 Preliminaries

2.1 Configuration LP The best known approxi-
mations for most bin packing type problems are based
on strong LP formulations called configuration LPs.
Here there is a variable for each possible way of fea-
sibly packing a bin (called a configuration). This al-
lows the packing problem to be cast as a set covering
problem, where each item in the instance I must be
covered by some configuration. Let C denote the set
of all valid configurations for the instance I. The
configuration LP is defined as:
(2.1)

min{
∑
C∈C

xC :
∑
C3i

xC ≥ 1(i ∈ I), xC ≥ 0, (C ∈ C)} .

As the size of C can possibly be exponential in the
size of I, one typically considers the dual of the LP
given by:
(2.2)

max{
∑
i∈I

vi :
∑
i∈C

vi ≤ 1(C ∈ C), vi ≥ 0, (i ∈ I)}.

The separation problem for the dual is the following
knapsack problem. Given set of weights vi, is there a
feasible configuration with total weight of items more
than 1. From the well-known connection between
separation and optimization [14, 24, 15], solving the
dual separation problem to within a (1 + ε) accuracy
suffices to solve the configuration LP within 1 + ε
accuracy.

Note that the configurations in (2.1) are defined
based on the original item sizes (without any round-
ing). However, for more complex problems (say 3-D
BP) one cannot hope to solve such an LP to within
1 + ε accuracy, as the dual separation problem be-
comes at least as hard as 2-D BP. In general, given
a problem instance I, one can define a configuration
LP in multiple ways (say where the configurations are
based on rounded sizes of items in I, which might be
necessary if the LP with original sizes is intractable).

For the special case of 2-D BP, the separation
problem for the dual (2.2) is the 2-D geometric
knapsack problem for which the best known result
is only a 2-approximation. However, Bansal et al. [1]
showed that the configuration LP (2.1) with original
sizes can still be solved to within 1 + ε accuracy (this

is a non-trivial result and requires various ideas). The
fact that solving the configuration LP does not incur
any loss for 2-D BP plays a key role in why the R&A
framework can give an important improvement for
the problem.

2.2 Next Fit Decreasing Height (NFDH) In
our algorithm we will heavily use the Next Fit
Decreasing Height(NFDH) procedure introduced by
Coffman et al. [8]. NFDH considers items in a non-
increasing order of height and greedily packs items in
this order into shelves, where a shelf is a row of items
having their bases on a line that is either the base of
the bin or the line drawn at the top of the highest
item packed in the shelf below. More specifically,
items are packed left-justified starting from bottom-
left corner of the bin, until the next item does not fit.
Then the shelf is closed and the next item is used to
define a new shelf whose base touches the tallest(left
most) item of the previous shelf. If the shelf does
not fit into the bin, the bin is closed and a new bin
is opened. The procedure continues till all the items
are packed. A key property of NFDH that we need
is the following.

Lemma 2.1. [8] Let B be a rectangular region with
width w and height h. If we pack small rectangles
(with both width and height less than ε) using NFDH
into B, total w · h − (w + h) · ε area can be packed,
i.e. the total wasted volume in B is at most (w+h) ·ε.

2.3 R&A Framework Now we describe the R&A
Framework as described in [3], but adapted for the 2-
D BP problem.

1. Solve the LP relaxation of (2.1) using the AP-
TAS in [1]. Let x∗ be the (near)-optimal solution
of the LP relaxation and let z∗ =

∑
C∈C x

∗
C . Let

r be the number of configurations in the support
of x∗.

2. Initialize a |C|-dimensional binary vector xr to
be a all-0 vector. For d(ln ρ)z∗e iterations repeat
the following: select a configuration C ′ ∈ C at
random with probability x∗C′/z

∗ and let xrC′ :=
1.

3. Let S be the remaining set of items not covered
by xr i.e. i ∈ S if and only if

∑
C3i x

r
C = 0.

On set S, apply ρ approximation algorithm A
that rounds the items to O(1) types and then
pack. Let xa be the solution returned by A for
the residual instance S.

4. Return x = xr + xa



Let Opt(S) and A(S) denote the value of the op-
timal solution and the approximation algorithm used
to solve the residual instance, respectively. Since the
algorithm uses randomized rounding in step 2, the
residual instance S is not known in advance. How-
ever, the algorithm should perform “well” indepen-
dent of S. For this purpose [3] define the notion of
subset-obliviousness where the quality of approxima-
tion algorithm to solve the residual instance is ex-
pressed using a small collection of vectors in R|I|.

Definition 1. An asymptotic ρ-approximation for
the set covering problem defined in (1), is called
subset-oblivious if, for any fixed ε > 0, there ex-
ist constants k,Λ, β(possibly dependent on ε), such
that for every instance I of (1), there exist vectors
v1, v2 · · · vk ∈ R|I| that satisfy the following proper-
ties:

1.
∑
i∈C v

j
i ≤ Λ, for each configuration C ∈ C and

j = 1, 2, . . . k;

2. Opt(I) ≥
∑
i∈I v

j
i for j = 1, 2, . . . k ;

3. A(S) ≤ ρ(maxkj=1

∑
i∈S v

j
i ) + εOpt(I) + β, for

each S ⊆ I.

Roughly speaking, the vectors are analogues of
the sizes of items and are introduced to use the
properties of the dual of (1). Property 1 says that
the vectors divided by constant Λ must be feasible
for (2). Property 2 provides lower bound for Opt(I)
and property 3 guarantees that the A(S) is not
significantly larger than ρ times the lower bound in
property 2 associated with S.

The main result about the R&A is the following.

Theorem 2.1. (simplified) If a problem has a ρ
asymptotic approximation algorithm that is subset
oblivious, and the configuration LP with original
item sizes can be solved to within (1 + ε) accuracy
in polynomial time for any ε > 0, then the R&A
framework gives a 1+ln ρ asymptotic approximation.

3 R&A Framework for Rounding Based
Algorithms

We describe here a general approach to show that a
wide class of algorithms for bin-packing type prob-
lems, in particular those based on rounding the item
sizes to O(1) types is subset-oblivious. While such
algorithms are hard to define formally, we state
their general approach below which subsumes all the
known algorithms that we are aware of.

General form of a rounding based algorithm. A
typical rounding based algorithm for a d-dimensional
problem has the following form. Given some accuracy
parameter ε > 0, one first defines two functions f(ε)
and g(ε) (that only depend on ε) with g(ε)� f(ε).
Call an item big if all its coordinates are at least f(ε),
and small if all its coordinates are at most g(ε). Call
an item medium if at least one coordinate lies in the
range (g(ε), f(ε)).

A standard argument [25, 6] shows that the
functions g and f can be chosen such that their
ratio is as large as desired, while ensuring that the
volume of medium items is at most ε times Vol(I),
the total volume of items in the input instance I.
These items can be ignored as they can be packed in
O(ε) ·Opt separate bins using NFDH. Now, all items
have each coordinate either small (in [0, g(ε)]) or big
(in [f(ε), 1]). Call an item skewed if it is neither big
or small (i.e. some coordinates are less than g(ε) and
some more than f(ε)). Skewed items can be classified
into at most 2d − 2 types based on which subset
of coordinates is large and d is the total number of
coordinates.

Now, the algorithm rounds the large dimensions
of big and skewed items to O(1) values (possibly in
a very complex way, including guessing of sizes), and
only focuses on their packing. The small items are
ignored and filled later using NFDH in the empty
spaces in the packing of big and skewed items. The
large separation between g and f ensures that this
incurs negligible loss in volume. Finally, one argues
that in any packing almost all skewed items are
placed in large regions called containers, where each
container satisfies the following: (i) has all items of
the same type, (ii) has large size in each dimension
and (iii) the items are packed within a container with
a negligible loss of volume. Thus these containers
can be viewed as big items. Then one defines some
algorithm A that finds a good packing of these
rounded big items and containers.

It is easily checked that the algorithm of [16], as
stated in section 4, falls directly in this framework.
We remark that the rounding of sizes in their algo-
rithm is non-trivial and actually depends on which
the bin patterns are used in the optimum solution
(that the algorithm will guess).

Relating the algorithm to the configuration
LP with rounded item sizes. Fix some pack-
ing problem, and suppose A is a rounding based
ρ-approximation algorithm for it. Then, A(I) ≤
ρ ·Opt(I) for any instance I of the problem. Let Ĩ de-



note instance obtained from I by rounding the large
dimensions according to the rounding performed by
A. Clearly, A(I) ≥ Opt(Ĩ) and hence

(3.3) Opt(Ĩ) ≤ ρ ·Opt(I).

Now, consider the configuration LP defined on
the instance Ĩ, where the configurations correspond
to feasible packing of the big items and the containers
in Ĩ. As there are only a constant number of item
types, this LP has only a constant number t of non-
trivial constraints, one for each item type.

For concreteness, let us consider the case of 2D-
BP. The items are classified into big and small. There
are two types of skewed items: long (with height
≥ f(ε) and width ≤ g(ε)) and wide (with width
≥ f(ε), height ≤ g(ε)). Upon rounding, the big
items are rounded to O(1) types and long (and wide)
items are assigned to O(1) groups of different heights
(or widths). For i = 1, . . . , p1, let Bi denote the
group of big items rounded to type i and crBj

be the
number items of type Bj in the r’th configuration.
Long items are rounded to p2 heights and assigned to
groups L1, · · ·Lp2 . Similarly wide items are rounded
to p3 widths and assigned to groups W1, · · ·Wp3 .
Let w(Lk) denote the total width of items in Lk,
and h(W`) denote the total height of items in W`.
Similarly, let crLk

(resp. crW`
) denote the total width

of items in Lk (resp. total height of items in W`) in
the configuration r.

Consider the following configuration LP: LP(Ĩ)

Min
∑
r

xr

s.t.
∑
r

crBj
xr ≥ |Bj | ∀j ∈ [p1]∑

r

crLk
xr ≥ w(Lk) ∀k ∈ [p2]∑

r

crW`
xr ≥ h(W`) ∀` ∈ [p3]

xr ≥ 0 (r = 0, 1 . . .m)

Let t = p1+p2+p3. As the LP has only t constraints,

(3.4) A(Ĩ) ≤ LP∗(Ĩ) + t.

Furthermore, let us assume that the right hand side
for each constraint in the LP above is either 0, or is at
least Ω((1/ε2) log t). If this is not the case, we simply
remove these items from the configurations and pack
them in new bins using NFDH. This requires at
most O(t · (1/ε2) log t) = Oε(1) additional bins. This
property will be useful later.

3.1 R&A for rounding based algorithms We
can now show the following.

Theorem 3.1. If there is a ρ approximation algo-
rithm A that rounds the large coordinate of items to
O(1) types before packing (these sizes could depend
on the instance I), then the R&A method gives a
(1 + ln ρ) asymptotic approximation bin packing for
I.

Proof. First, we consider the configuration LP in step
1 of the R&A framework and apply the randomized
rounding step to it. The probability that an item
i ∈ I is not covered by xC′ in some iteration, is
1 −

∑
C3i x

∗
C/z

∗. Let S be the set of residual items
not covered by any of the bins selected in (ln ρ)z∗

iterations. Thus the probability that i is not covered
in any of the (ln ρ)z∗ iterations is at most:

P(i ∈ S) = (1−
∑
C3i

x∗C/z
∗)d(ln ρ)z

∗e

≤ (1−
∑
C3i

x∗C/z
∗)(ln ρ)z

∗
≤ e(− ln ρ) =

1

ρ
.

(3.5)

where the last inequality follows as
∑
C3i x

∗
C ≥ 1 for

all i ∈ I and (1− x−1)αx ≤ e−α for x > 0.
Let Opt(I) be the number of bins used in the

optimal packing of I. Now in step 2 at most
d(ln ρ)z∗e ≤ 1 + (ln ρ) · Opt bins were used. Let S
denote the set of items that are still unpacked. It
remains to bound the number of bins used for packing
S using A.

To this end, consider the rounding that A would
apply to the items when given instance I, and con-
sider the instance obtained by applying this rounding
to items in S. Let us denote this instance as Ĩ ∩ S.
Now consider the following configuration LP for Ĩ∩S:
LP(Ĩ ∩ S)

Min
∑
r

xr

s.t.
∑
r

crBj
xr ≥ |Bj ∩ S| ∀j ∈ [p1]∑

r

crLk
xr ≥ w(Lk ∩ S) ∀k ∈ [p2]∑

r

crWl
xr ≥ h(W` ∩ S) ∀` ∈ [p3]

xr ≥ 0 (r = 0, 1 . . .m)

Now by (3.5), E[|Bj ∩S|] ≤ |Bj |/ρ, and similarly
E[w(Lk∩S)] ≤ w(Lk)/ρ and E[h(W`∩S)] ≤ h(W`)/ρ.
Moreover, as each |Bj |, w(Lk) and h(W`) are at
least Ω((1/ε2) log t), by standard Chernoff bounds



it follows that the probability that |Bj ∩ S| ≥
(1 + ε)E[|Bj ∩ S|] is at most exp(−ε2|Bj |/ρ) =
exp(−Ω(log t)/ρ) = 1/poly(t). Similarly, this holds
for all other constraints. Taking a union bound over
the t constraints, it follows that with high probability,
the right hand side for each constraint in LP(Ĩ ∩ S)
is at most (1 + ε)/ρ times the right hand side of
the corresponding constraint in LP(Ĩ). This gives
us that,

A(Ĩ ∩ S) ≤ LP∗(Ĩ ∩ S) + t

≤ (1 + ε)

ρ
LP(Ĩ) +O(1)

≤ (1 + ε)

ρ
Opt(Ĩ) +O(1)

≤ (1 + ε)Opt(I) +O(1).

Here, the first step follows by (3.4) and the last
step follows by (3.3). This gives the desired 1 + ln ρ
asymptotic approximation.

The above algorithm can be derandomized using
standard techniques as in [3].

4 1.5-approximation algorithm that rounds
items to O(1) types

In this section we present Jansen-Prädel algorithm
that rounds the items into O(1) types of sizes before
packing them into bins. Most of the technical details
are moved to the Appendix.

4.1 Technique The algorithm works in two
stages. In the first stage, the items in the input in-
stance are rounded to O(1) types of rectangles. By
guessing structures of the rounded items, we guess
the rounded values and how many items are rounded
to each such value. In the second stage rounded rect-
angles are packed into bins. The algorithm uses the
following structural theorem.

Theorem 4.1. [16] For any value εc, with 1
εc

being
a multiple of 24, and for any solution that fits into m
bins, the widths and the heights of the rectangles can
be rounded up so that they fit into (3/2 + 5εc)m+ 37
bins, while the packing of each of the bins satisfies
either Property 1.1 (The width of each rectangle in

bin Bi of width at least εc is a multiple of
ε2c
2 ) or

Property 1.2 (The height of each rectangle in bin Bi
of height at least εc is a multiple of

ε2c
2 ).

Using the above structural theorem they show that
given any optimal packing they can remove all items
intersected with a thin strip in the bin and round

one side of all remaining items to some multiple of
ε2c/2. Then they pack the cut items separately to
get a packing in at most (3/2) ·Opt bins that satisfy
either property 1.1 or property 1.2. After rounding
one side of the rectangle, the other side is rounded
using techniques similar to those used by [22]. In
this version of the algorithm after items are rounded
to O(1) types, we can find the optimal packing of
these rounded items by brute-force. The algorithm
is actually guessing the structure of optimal packing
i.e. rounded values for each item, to use the
structural theorem to get a feasible packing in ≤ ( 3

2 +
ε)Opt + O(1) bins. In the Appendix, we explain the
algorithm step by step and show that the algorithm
always rounds the items to O(1) number of types.
The main structure of their algorithm is described
below:

Input: A set of items I := {r1, r2, · · · , rn} where
rj ∈ (0, 1]× (0, 1] for all j ∈ [n] and set of bins of size
1× 1.
Output An orthogonal packing of I without rota-
tions.

Algorithm:
1. Guess Opt: Guess Opt by trying all values
between 1 and n.
2. For each guessed values of Opt do

(a) Classification of rectangles: Compute δ using
methods similar to [18] to classify rectangles and
pack medium rectangles using Next Fit Decreas-
ing Height (NFDH).

(b) Guessing structures: Enumerate suitably over
all structures (sizes to which items are rounded
to and for each size the number of items that
are rounded to that size) of the set of big, long,
wide rectangles and the set of wide and long
containers.

(c) For each guess do Packing:

• Assign big rectangles by solving flow net-
work with the algorithm of Dinic[10];

• Do greedy Assignment of long and wide
rectangles into O(1) groups;

• Pack O(1) number of groups of long and
wide rectangles into containers by brute
force;

• Pack the small rectangles using Next Fit
Decreasing Height;

• Pack O(1) types of containers and O(1)
types of big rectangles into bins using brute
force;

3. Return a feasible packing;



5 Lower bound for rounding based
algorithms

In this section, we describe some limitations of round-
ing based algorithms.

Theorem 1.2. (restated) Any rounding algo-
rithm that rounds at least one side of each large item
to some fixed constant independent of the problem
instance (let us call such rounding input-agnostic),
cannot have an approximation ratio better than 3/2.

Proof. Consider an input-agnostic algorithm A that
rounds at least one side of each large item to one of
the values c1, c2 . . . , cz, that are chosen independent
of the input instance. Let i and j be such that
ci < 0.5 ≤ ci+1 and cj−1 ≤ 0.5 < cj . Let
f = min{0.5 − ci, cj − 0.5}. Here we assume the
algorithm rounds identical items with the same height
and width to same types.

Figure 1: Lower bound example for rounding
based algorithms

Figure 2: The case when Ci+1 > 1/2

Now consider an optimum packing using m = 2k
bins where each bin is packed as in figure 1, for
some fixed x ∈ (0, f). Under the rounding, an

item (1/2 + x) × (1/2 − x) is rounded to either
(1/2+x)× (ci+1) (let us call such items of type P) or
to (cj)× (1/2− x) (let us call such items of type Q).
Similarly, each item (1/2− x)× (1/2 + x) is rounded
to either (ci+1) × (1/2 + x) (call these of type R) or
to (1/2− x)× (cj) (call these of type S).

Let us first consider the easy case when ci+1 >
1/2. It is easily checked that in this case, any bin
can contain at most 2 rounded items: (i) either a P-
item and a S-item or (ii) a Q-item and a R-item.
See, for example figure 2. This implies that a 2-
approximation is the best one can hope for if 1/2
is not included among the c1, c2 . . . , cz.

Figure 3: Configuration {P, P, S}

Figure 4: Configurations {R,R,Q}

We now consider the case when ci+1 = 1/2. We
claim that the possible bin configurations are a) [{
P,P,S } and { S,S }], which happens when the items
are rounded to types P and S. See figure 3. Or,
b) [{ R,R,Q } and { Q,Q }], which happens when
items are rounded to types R and Q. See figure 4.
Furthermore, the remaining two cases can be ignored.
That is, when items are rounded to type P and R or
when items are rounded to type Q and S, as in these
cases at most two items can be packed in a bin.



So, let us consider case (a). The proof for case
(b) is analogous. Let X1 and X2 denote the number
of configurations of type { P,P,S } and { S,S }
respectively. Then we get the following configuration
LP:

Min X1 +X2

s.t. 2X1 ≥ 4k

X1 + 2X2 ≥ 4k

X1, X2 ≥ 0

The dual is:

Max 4k(v1 + v2)

s.t. 2v1 + v2 ≤ 1

2v2 ≤ 1

v1, v2 ≥ 0

A feasible dual solution is v1 = 0.25, v2 = 0.5.
This gives dual optimal as ≥ 3k. Thus the number
of bins needed is ≥ 3k = 3m/2.

This in particular implies that to beat 3/2 one
would need a rounding that is not input-agnostic, or
which rounds identical items with the same height
and width to different types, sometimes rounded by
width and sometimes by height.

We also note that 4/3 is the lower bound for
any rounding algorithm that rounds items to O(1)
types. This seems to be a folklore observation, but
we state it here for completeness and give a proof in
the appendix.

Theorem 5.1. Any algorithm that rounds items to
O(1) types cannot achieve better than 4/3 approxi-
mation.

6 Final Remarks

The approach for the R&A framework described here
applies directly to wide variety of algorithms and
gives much simpler proofs for previously considered
problems (e.g. vectorBP, 1D BP) [3]. As rounding
large coordinates to O(1) number of types is by
far the most widely used technique in bin-packing
type problems, we expect wider applicability of this
method.

Moreover, improving our guarantee for 2-D BP
will require an algorithm that is not input-agnostic.
In particular, this implies that it should have the
property that it can round two identical items
(i.e. with identical height and width) differently. One
such candidate is the guillotine packing approach [4].
It has been conjectured that this approach can give

an approximation ratio of 4/3. One way to show this
would be to prove a structural result bounding the
gap between guillotine and non-guillotine packings.
At present the best known upper bound on this gap
is T∞ ≈ 1.69 [6].

Acknowledgements We thank Prasad Tetali for
helpful discussions.
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A Appendix

A.1 Details of Algorithm in Section 4: In this
section we describe the algorithm in [16], to fit in our
framework.

A.1.1 Binary Search for Opt: Using binary
search between the number of rectangles (upper
bound) and total area of the rectangles (lower
bound), the algorithm finds the minimum m such
that there exists a feasible solution with (3/2 + ε) ·
m+O(1) bins. For each guess of Opt, we first guess
the rounding in the following way and then we pack
the rounded items into the bins.

A.1.2 Classification of rectangles: A value δ
(≤ ε′ = ε/48) is selected similar to [18], such that
1
δ is a multiple of 24 and rectangles with at least of
one of the side lengths between δ and δ4 have a small
area (≤ ε′ ·Opt). Now we classify the rectangles into
five types:

• Big: both width and height is at least δ.

• Wide: width is at least δ, height is smaller than
δ4.

• Long: height is at least δ, width is smaller than
δ4.

• Small: both width and height is less than δ4.

• Medium: either width or height is in [δ4, δ). As
medium rectangles are of total size ≤ ε′ · Opt,
they can be packed using NFDH into at most
additional O(ε′ ·Opt) bins. Choose εc = δ.

A.2 Rounding and Guessing structures: First
we will show that given any optimal packing, we can
get a packing in at most ( 3

2 +ε)Opt+O(1) bins where
all items are rounded to O(1) types. Then we will
guess the structure of optimal packing to assign items
to its rounded type.

Assuming we are given the optimal packing, we
can get rounding of one side by using theorem 4.1.
Now we will find the rounding of the other side.
Let Opt = m and out of these m bins m1 bins
B1,B2 · · · Bm1

are of type 1 (that satisfy property 1.1,
i.e. the width and the x-coordinate of each rectangle

in Bi of width at least εc is a multiple of
ε2c
2 ) and

remaining m2(= m −m1) bins Bm1+1,Bm1+2 · · · Bm
are of type 2 (that satisfy Property 1.2, i.e. the height
and the y-coordinate of each rectangle in Bi of height

at least εc is a multiple of
ε2c
2 ). Thus the widths of

big and wide rectangles in bins of type 1 and the



heights of big and long rectangles in bins of type 2
are rounded to some multiples of δ2/2. Let Bwi and
Ww
i are the set of big and wide rectangles respectively

that are packed in type 1 bin and widths are rounded
to i · δ2/2 for i ∈ {2/δ, 2/δ + 1, · · · , 2/δ2}. Similarly,
let Bhi and Lhi are the set of big and long rectangles
respectively that are packed in type 2 bin and heights
are rounded to i · δ2/2. Let Lw and Wh be the
set of long rectangles in type 1 bin and set of wide
rectangles in type 2 bins respectively. Set of small
and medium rectangles are denoted by M and S
respectively.

A.2.1 Rounding of big, long and wide rectan-
gles: The rounded widths of rectangles in Bwi and
Ww
i and rounded heights of rectangles in Bhi and

Lhi are known. In this step we find the rounding
of heights of rectangles in Bwi and Lw and rounding
of widths of rectangles in Bhi and Wh using linear
grouping techniques similar to Kenyon-Rémila [22]
and introduced by Fernandez de la Vega and Lueker
[11] .

For any set Bwi , we sort the items r1i , r
2
i · · · r

|Bw
i |

i

according to non-increasing height, i.e. h(rei ) ≥
h(rfi ) for e ≤ f . Now define at most 1

δ2 subsets Bwi,j ,

each of which contains dδ2 · |Bwi |e rectangles except
possibly for the last subset. For any two rectangles
rA ∈ Bwi,j1 and rB ∈ Bwi,j2 and j2 ≥ j1, h(rA) ≥
h(rB). We round height of all rectangles in each set
Bwi,j to the height of tallest rectangle in the subset
(we call it to be the round rectangle of the subset).
Set apart the set Bwi,1 and for other rectangles in Bwi,j
place them on the position of rectangles of Bwi,j−1.
This is possible as all subsets(except possibly the last)
have same cardinality and all rectangles have same
width.

Similarly, sort long rectangles in Lw according
to non-increasing height. We divide the set Lw into
at most at most 1

δ2 subsets Lw1 · · ·Lw1/δ2 such that

every subset has total width δ2 · w(Lw). If needed
items are sliced vertically to create subsets. For
any two rectangles rA ∈ Lwj1 and rB ∈ Lwj2 and
j2 ≥ j1, h(rA) ≥ h(rB). We round the height of
each rectangle to the height of the tallest rectangle
in it. Apart from Lw1 , rectangles of Lwj are packed on
position of rectangles of Lwj−1.

The rectangles in Lw1 , B
w
2/δ,1, · · ·B

w
2/δ2,1 are

packed separately into additional bins using NFDH.
Note that width of all rectangles in Lw, Bw2/δ, · · ·B

w
2/δ2

is at most 1/δ.m1 as each rectangles has height at
least δ. So, w(Lw1 ) + w(Bw2/δ,1), · · ·w(Bw2/δ2,1) ≤
δ2.w(Lw) + w(Bw2/δ), · · ·w(Bw2/δ2) ≤ δ2 · 1/δ · m1 =

δ · m1. Thus the total area of the rectangles in
Lw1 ∪ Bw2/δ,1 ∪ · · · ∪ B

w
2/δ2,1 is O(δ ·m1) and thus can

be packed in additional O(δ ·m1) bins using NFDH.
Widths of rectangles in Bhi ,W

h are rounded in a
similar manner.

A.2.2 Rounding of containers: We have not
rounded width of long rectangles and heights of wide
rectangles. Now we construct rectangular containers
for the wide and long rectangles for that purpose.
We only show the rounding of containers for type 1
bins. Rounding containers for type 2 bins can be done
analogously. Let CwL be the set of containers for long
rectangles and CwW be the set of containers for wide
rectangles in type 1 bins. Define 2/δ2 vertical slots of
width δ2/2 in each type-1 bin Bi. A long container is
part of a slot that contains at least one long rectangle,
and the container is bounded at the top and bottom
by a wide or big rectangle or the boundary(ceiling or
floor) of the bin. There can be at most (1/δ−1) long
containers in a slot. Thus there are at most O(δ3)
long containers per bin.

Next, construct wide containers by extending
upper and lower edges of big rectangles and long
containers in both directions till they hit another
big rectangles, long container or boundary (left or
right side of bin). Wide and small rectangles are
horizontally cut by these lines. As there are O(δ3) big
rectangles and long containers, there are O(δ3) wide
containers in Bi. This way any packing in optimal
bin is transformed into a packing of big rectangles
and long and wide containers. There is no empty
space left, hence all small rectangles are fractionally
in the long and wide containers.

Now we do the rounding of containers. Heights
of all containers in CwW are rounded down to near-
est multiple of δ4 cutting the uppermost wide and
short rectangles. There are O(1/δ3) · m1 wide con-
tainers and small rectangles have height less than δ4.
Thus the cut wide and short rectangles are packed
using NFDH in additional O(δ · m1) bins. For long
containers we remove the short rectangles and push
all long rectangles vertically down till they touch top
of another rectangle or boundary. Then we round
down the heights to either nearest multiple of δ4 or
combination of rounded heights of the long rectan-
gles. Note that these heights are rounded down to
although large but still O(1) number of types. Total
area loss for each container is O(δ4 · δ2/2) and num-
ber of long containers is O(1/δ3). So in the reduced
container we pack the small items till we can and the
remaining small rectangles are packed into additional



O(δ3 ·m1) bins using NFDH.
Similarly long containers can be constructed for

the additional bins that are used to pack items of Lw1 .
These bins will have at most (2δ · p1 + 1) · 2/δ2 long
containers of width δ2/2 and height 1. Note that
there are O(1/δ2)1/δ possible height of containers,
which can be reduced to O(1/δ2) heights using linear
grouping and loosing only a small constant.

Thus at the end of the rounding of containers,
the containers have the following properties:
2.1. There are at most O(1/δ3) ·m1 wide containers
in CwW with width of multiple of δ2 and height of a
multiple of δ4.
2.2. There are at most O(1/δ3) ·m2 long containers
in ChL with height of multiple of δ2 and width of a
multiple of δ4.
2.3. There are at most O(1/δ3)·m2 wide containers in
ChW with O(1/δ2) different widths(either a multiple
of δ4 or a combination of rounded width of wide
rectangles in Wh) and height δ2/2.
2.4. There are at most O(1/δ3)·m2 long containers in
CwL with O(1/δ2) different heights(either a multiple
of δ4 or a combination of rounded height of long
rectangles in Lw) and width δ2/2.

At the end of the rounding step we get the
following theorem.

Theorem A.1. [16] Given an optimal packing I into
m bins, it is possible to round the widths and heights
of the long, wide and big rectangle to O(1) types
such that it fits in at most (3/2 + O(f1(δ)))m +
O(f2(δ)) bins for some functions f1 and f2 and
these bins satisfy either property 1.1 or property 1.2.
Furthermore the heights of long and big rectangles
in Lw and Bw, widths of wide and big rectangles
in Wh and Bh are rounded up to O(1/δ2) values.
The wide and long rectangles are sliced horizontally
and vertically respectively and packed into containers
satisfying properties 2.1-2.4 and small rectangles are
packed fractionally into the wide and long containers.
Medium rectangles are packed separately in O(δ) bins.

A.2.3 Transformation of rectangles: Now we
guess the structure of the optimal packing for the
assignment of rectangles to the rounded rectangles.

First we have to determine whether width or
height of a big rectangle is rounded to a multiple
of δ2/2. We guess the cardinality of sets Bwi and
Bhi for i ∈ {2/δ, 2/δ + 1, · · · 2/δ2}. This can be
done by choosing less than 2 · (2/δ2) values out of
n and note that this is polynomial in n. For each
such guess we also guess 2 · (2/δ2) · (1/δ2) round
rectangles out of n rectangles. These values give us

the structure of subsets as discussed in the rounding
of big rectangles. Now to find the assignment of big
rectangles to these subsets, we create a directed flow
network G = (V,E). First we create source(s) and
target node(t). For each rectangle r ∈ I, we create
a node and add an edge from s to r with capacity
one. Next we create nodes for all subsets Bwi,j and

Bhi,j and add an edge from r to Byi,j of capacity one
if r might belong to Byi,j where y ∈ {w, h}. Next
add edges between nodes corresponding to subsets
and the target node of infinite capacity. Now apply
Dinic’s algorithm [10] or any other flow algorithm to
find if there is a s−t flow of value same as the number
of big rectangles. If there exists such a flow, we get
a valid assignment of big rectangles into subsets. On
the other hand, if there is no such flow then continue
to other guesses.

Now we need to transform the wide and long
rectangles. First we need to decide whether a wide
rectangle belong to type 1 or type 2 bins. The case for
long rectangle is analogous. Note that in the linear
grouping of wide rectangles in Wh, 1/δ2 subsets were
created. The total height of all rectangles in Wh is
bounded by n · δ4. So we approximately guess the
total height of Wh by choosing some t ∈ {1, 2, · · ·n}
so that t · δ4 ≤ h(Wh) ≤ (t + 1) · δ4. As all
subsets Wh

1 ,W
h
2 , · · ·Wh

1/δ2 have same height, each

subset will have height h(Wh) · δ2. We also guess the
height of rectangles to which all rectangles in each
subset are rounded to. This can be done by choosing
1/δ2 rectangles out of n rectangles. Thus we can
approximately guess the structure of the rectangles in
Wh. Remaining wide rectangles are in Ww i.e. their
width are rounded to next multiple of δ2/2. We guess
approximately the total height of the rectangles in
Ww

2/δ, · · ·W
w
2/δ2 by choosing (2/δ2 − 2/δ + 1) integral

values tk such that tk · δ4 ≤ h(Ww
j ) < (tk + 1) · δ4.

Thus we can guess structure of all subsets of wide
rectangles and we need to assign the wide rectangles
into these subsets. For the assignment we sort the
wide rectangles in non-increasing order. We assign
wide rectangles greedily into all sets Ww

k ∈ Ww

starting fromWw
2/δ2 till total height exceeds (tk+1)·δ4

for each set Ww
k . The remaining rectangles are

similarly greedily assigned into sets Wh
1 , · · ·Wh

1/δ2 .
It is easy to show that for the right guesses of tk
values, all rectangles will have a valid assignment.
Afterwards we remove the shortest rectangles in each
subset to reduce the height to at most tk · δ4. It can
be shown that the total height of these removed wide
rectangles is O(δ2) and thus can be packed into O(1)
additional bins.



A.2.4 Construction of containers: Here we de-
scribe the construction of long and wide containers
that are placed in type-1 bins. The construction of
long and wide containers that are placed in type-2
bins, is analogous.

Each wide containers in CwW has height of a
multiple of δ4 and width of multiple of δ2/2. Hence
we can guess nwi,j , number of wide containers that has

width iδ2/2 and height j · δ4 by choosing 1/δ4 · 2/δ2
values out of n.

Similarly long containers in CwL have same width
and O(1/δ2) types of heights (either a combination
of rounded heights of long rectangles or a multiple of
δ4) that we can guess.

A.2.5 Packing long and wide rectangles into
containers There are four cases: packing of long
rectangles into long containers in type 1 bins, packing
of long rectangles into long containers in type 2 bins,
packing of wide rectangles into wide containers in
type 1 bin and packing of wide rectangles into wide
containers in type 2 bins. Here let us only consider
the wide containers in type 1 bins, other cases can be
handled similarly. As there are O(δ3) types of wide
containers and O(δ2) types of wide rectangles, we try
out all possible way wide rectangles can be put into
wide containers by brute force. The running time can
be further improved if we use linear programs as in
Kenyon-Rémilla [22]. Then we add back the small
rectangles using NFDH in the empty regions of the
O(δ3) types of containers till we can.

A.2.6 Complete packing Now we have big rect-
angles and containers of O(1) type, thus there are
O(1) number of possible configurations of packing of
big rectangles and containers into bins. We try out
all configurations by brute force to find the optimal
packing of big rectangles and containers. Then we
add back the small rectangles using NFDH in the
empty regions of the bin till we can and the remain-
ing small rectangles are packed into additional bins.

A.3 Analysis In the rounding step,
separate packing of rectangles in
Lw1 , B

w
2/δ,1, · · ·B

w
2/δ2,1,W

h
1 , B

h
2/δ,1, · · ·B

h
2/δ2,1 need

at most O(δOpt) additional bins. In rounding
containers the cut wide, long and small rectangles
are packed in additional O(δOpt) bins. Packing
of medium and remaining small rectangles take
O(δOpt) bins. Removed wide rectangles in the step
of transformation of wide rectangles require O(1)
extra bins. So using the structural theorem total

(3/2 +O(δ))Opt +O(δ) bins are sufficient.
The running time of the steps are given as fol-

lows. The binary search requiresO(log n) time. Com-
puting δ in a method similar to [18] takes O(n/ε)
time. For the structure of the set of big rectangles,
we guess O(1/δ2) values out of n to guess the cardi-
nality of the sets and for such guess, O(1/δ4) round
rectangles are guessed. Similarly, we get the struc-
ture of wide and long rectangles, we guess O(1/δ3)
values out of n. Structure of long and wide con-
tainers require guessing O(1/δ6) values out of n and
guessing O(1/δ2) values out of O(1/δ4 + (1/δ2)1/δ)
respectively. Solving the flow network takes O(n3)
time. Assignment of wide and long rectangles into
groups will take O(n log n) time. The running time
for packing containers and big rectangles using the
brute force method is a large, however, constant
in triple exponential in δ. It can be reduced us-
ing integer programs of Kannan et al. [19]. Pack-
ing medium and small rectangles using NFDH re-
quire O(n log n/δ3) time. Totally the running time
is bounded by O(nh1(1/ε).h2(1/ε)), where h1, h2 are
polynomial functions. Thus the total running time is
polynomial for fixed ε.

A.4 Bin packing with rotations Bin packing is
rotation is almost similar to the packing without ro-
tation. In this case we only have bins with a packing
that satisfy property 1.1. Remaining rounding steps
are analogous to the versions with rotations. The step
of transformation of rectangles, however, is slightly
different when we allow rotations. For big rectan-
gles, in the flow network we connect a big rectangle
with all subsets that can contain the rectangle before
and after rotating by 90◦. On the other hand, for
transformation of wide and long rectangles, we ap-
proximately guess w(Lw) and the heights of the sets
Ww

2/δ, · · ·W
w
2/δ2 and the height of the cut rectangles

in Lw. Now we can rotate all long rectangles to have
only wide rectangles and greedily assign them to the
wide rectangles in Ww

2/δ, · · ·W
w
2/δ2 . The remaining

wide rectangles are rotated back and assigned to the
sets Lw1 · · ·Lw1/δ2 . The analysis is also similar, how-
ever, gives slightly better constants in the approxi-
mation ratio.



A.5 Proof of theorem 5.1

Theorem A.2. If an algorithm rounds items to O(1)
types, then it can not achieve better than 4/3 approx-
imation.

Proof. Consider the packing in figure 1. Assume
there is an optimal packing of m = 3k bins where
each bin is having similar packing as in figure 1 for
m different values of x ∈ (0.001, 0.01]. Note that
the sum of the height and width is exactly 1 for
each rectangle. If we use rounding to O(1) items,
then for all but O(1) items i, w(i) + h(i) exceed
1. Without loss of generality, we assume each item
touches boundary. Otherwise for these set of items,
we can extend sides vertically and horizontally so
that it touches boundary or another item. As the
total sum of the side lengths of a bin is 4 and
each item has intersection with boundary of length
> 1 , we can only pack 3 rounded items in a bin.
Thus 4m = 12k items can be packed in at least
4k−O(1) = 4/3m−O(1) bins. This example packing
is particularly interesting as it also achieves the best
known lower bound for guillotine packing i.e. 4/3.
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